
Information Theory, Coding and Cryptography

Homework Set 3

Please send your answers – either typeset on a computer, or handwritten
(but readable) and scanned, preferably in PDF format – to bouman@cwi.nl

before Wednesday March 30th, 23h59. Do not forget to put your name on
the first page. Have fun!

1 Shannon’s Noisy-Channel Coding Theorem

Given is a binary symmetric channel (BSC) with crossover probability 0.1.
For each (rate, bit-error probability)-pair below, argue (or compute) whether
it is achievable using channel coding. (The unit used to specify the rates is
bits per channel use.)
a) [1 point] (0.6, 10−3)

b) [1 point] (0.4, 0.04)

c) [1 point] (0.5, 10−17)

d) [1 point] (0.7, 0.08)

2 The Erasure and Z Channel

A simple but important channel model is the erasure channel. It is usually
depicted as
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In this channel, the receiver receives “?” in case a bit is erased, which
happens with probability p. Note that there is a form of symmetry; the
erasure probability is taken to be the same for zeros and ones.

a) [1 point] For what value of p will it be impossible to send information
over the erasure channel? Why?

b) [3 points] Derive the capacity of the erasure channel.

The erasure channel is not just a toy model; you’ll encounter it for example
in the UDP protocol, which is used to send packets over the Internet, where
a packet is just a collection of many bits. The UDP protocol computes
a checksum of these bits and sends it along with the packet. If, at the
receiver side, the bits do not match with the checksum, all bits are declared
as “?”-symbols, and the packet is said to be “lost”.

Suppose that you use Skype (which uses UDP) and the probability of
packet loss is p. The more packet loss, the lower the sound quality. To
improve the sound quality, we will compute from every two packets X and
Y , where X = (X1, X2, . . . , XN ) for Xi a bit, and Y is defined similarly, a
parity packet, Z, with Zi = Xi ⊕ Yi and send it along with the X and Y
packets. The receiver can then recover some erased packets using the parity
packets.
c) [2 points] Compute the block erasure probability (when at least one

packet of the block has been erased, we say the entire block has been
erased) for blocks of two packets of the uncoded system, and the block
erasure probability of the system with the parity coding.

Yet another basic channel model is the Z-channel, where the “Z” origi-
nates from the Z-shaped graph structure of the channel:
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The canonical example of an application where this channel occurs naturally
is an optical link. A light source at the transmitter side can be switched on
(“1”) or off (“0”). Along the way, the light signal may be attenuated, such
that it is possible that a zero is received while a one was transmitted. It is
however not possible that light is received while the light source is switched
off. Note that here there is an intrinsic asymmetry between zeros and ones
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(except in the trivial case where p = 0).
d) [6 points] Compute the capacity of the Z-channel for p = 0.1. Hint:

Consider a binary random variable X as input to the Z-channel, with
distribution (q, 1 − q), and optimize the mutual information (numeri-
cally) over q.

3 Lossy Compression

Let X be a uniformly random n-bit string, hence H(X) = n. We want to
compress X to Y ∈ {0, 1}`, where ` < n. Hence we cannot compress X
losslessly; a positive error probability will be inevitable. In this problem,
we will first learn about the best error probability that one can hope for
(given some `), then we will analyze the performance (in terms of error
probability) of two compression strategies.
a) [5 points] Give a lower bound on H(X|Y ) and use the corollary to Fano’s

inequality in the lecture notes to get a lower bound on the bit-error
probability p̄e, where p̄e is defined as in the lecture notes. Hint: Write
the inverse of the binary entropy function as h−1(·).

b) [3 points] Suppose that we compress by just discarding the last n − `
bits of X. Assume that the decompressor will simply guess the missing
bits uniformly at random. Compute the average probability of bit error
p̄e obtained using this strategy.

Now consider the following compression strategy. We take a (n, `) channel
code C (i.e. the encoder maps `-bit words to n-bit codewords) for the binary
symmetric channel having rate R = `/n. But now, we will use this channel
code in “in reverse”, in that we pass X through the decoder of this code.
By doing so, the output will have length ` and we obtain a compressor with
rate 1/R.
c) [3 points] Assume that C is ε-capacity-achieving for some small positive

ε, meaning that R + ε equals the capacity of some BSC with crossover
probability q. Find an expression for q in terms of n, ` and ε.

The decoder of C “expects” that the bits entering the decoder are coming
out of a BSC with parameter q, hence it tries to correct roughly a q-fraction
of the bits. In our setting, the codeword found by the decoder will differ
from X on average in a q-fraction of the bits. Hence, the q that you have
(hopefully) found in (b) is exactly the average bit error probability that we

are looking for.
d) [3 points] Plot the bit error probabilities found in (a), (b) and (c) (on the

y-axis) as a function of the rate R (on the x-axis) with range R ∈ [1/3, 1],
by taking ε = 0.01.

4 Typicality

Consider a random source S that emits independent and identically dis-
tributed binary symbols Xi. (We view these output symbols as random
variables.) Let p := Pr[Xi = 1].
a) [1 point] Suppose the source emits N symbols, and let X :=

(X1, . . . , XN ) be the bit string composed of these symbols. What is
the expected Hamming weight of X?

The set of N -bit strings whose Hamming weight is βN -close to the expected
Hamming weight of an N -bit string coming from S is called the typical set
T Nβ (S):

T Nβ (S) := {b ∈ {0, 1}N : |wt(b)/N − p| ≤ β}

b) [3 points] Give a (non-trivial) upper bound for the probability that X
is atypical (i.e. not in the typical set defined above). Hint: use that

Pr[ | 1N
∑

Xi − µ| > δ] ≤ 2 Pr[ 1
N

∑
Xi − µ > δ].

c) [2 points] Compute or upper bound the size of the typical set T Nβ (S).
Hint: have a look at Lemma 4 in the notes.

5 Privacy Amplification

Fix a finite field Fq. Consider the family of functions

F := {f : Fd+1
q → Fq},

with functions f defined by

f : x 7→ x0 +
d∑
i=1

xiri,
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where x = (x0, . . . , xd) ∈ Fd+1
q and where each ri ∈ Fq.

a) [1 point] What is the cardinality of F?

Let F be random over F , i.e. obtained by replacing the ri in the definition
of f by the random variables Ri, which are uniformly distributed over Fq.
b) [4 points] Prove that the family F is universal, i.e. prove that for any

x, x′ ∈ Fd+1
q such that x 6= x′, it holds that

P [F (x) = F (x′)] ≤ 1/q

The conditional guessing probability and the conditional min-entropy are
respectively defined as:

Guess(X|Y ) :=
∑
y

PY (y) max
x

PX|Y=y(x)

and
Hmin(X|Y ) := − log Guess(X|Y ).

c) [4 points] Prove that Hmin(X|Y ) ≤ H2(X|Y ) ≤ H(X|Y ).

Let X be a uniformly distributed n-bit string, held by Alice, and she wants
to derive a cryptographic key from it. However, Eve holds Y , which is
obtained by passing X though a BSC with crossover probability 0.15.
d) [3 points] Compute H2(X|Y ).

Alice applies privacy amplification with the help of the family F , resulting
in a shorter, but almost uniform key S. Let F be the function that Alice
selected at random from F .
e) [2 points] Find the maximum length of the extracted key, such that it

has statistical security (i.e. statistical distance from being uniform) of
< 10−6.
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