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What the Paper is About

Entropic uncertainty relations are quantitative charac-
terizations of Heisenberg’s uncertainty principle, which
make use of an entropy measure to quantify uncertainty.
In quantum cryptography, they are often used as vital
tools in security proofs.

We propose and prove a new entropic uncertainty re-
lation. It is the first entropic uncertainty relation that
lower bounds the min-entropy of the measurement out-
come with respect to all but one measurements, out of a
given class of measurements.

To demonstrate its applicability, we propose a new
quantum identification scheme in the bounded quantum
storage model (BQSM). The new uncertainty relation
forms the core of the scheme’s security proof.

The technical (full) version of this work can be found
at arxiv.org/abs/1105.6212.

Novelty

Our new entropic uncertainty relation distinguishes it-
self from previously known uncertainty relations by the
following collection of features:

1. It uses the min-entropy as entropy measure, rather
than the Shannon entropy. Since the min-entropy is
a more conservative measure (i.e., never larger than
the Shannon entropy), it guarantees a stronger type
of uncertainty. Furthermore, since min-entropy al-
lows for privacy amplification, such entropic uncer-
tainty relations are useful tools in quantum cryp-
tography.

2. It lower bounds the uncertainty of all but one mea-
surement, outcome with respect to arbitrarily large
(but specifically chosen) sets of possible measure-
ments. This is clearly stronger than typical entropic
uncertainty relations that lower bound the uncer-
tainty on average (over the choice of the measure-
ment).

3. The measurements are qubit-wise measurements
(in the computational or Hadamard basis), and
thus the uncertainty relation applies to a setting
that can be implemented using current technology.

To the best of our knowledge, no previous entropic
uncertainty relation satisfies (1) and (2) simultaneously,
let alone in combination with (3). Indeed, in the re-
cent overview article [1], Wehner and Winter declare it
an interesting open question whether strong entropic un-
certainty relations exist for a small constant number of
measurement settings and more than two measurement
outcomes. We feel that our new uncertainty relation an-
swers this question in the affirmative by all means.

Our New Uncertainty Relation Explained

To better understand our new uncertainty relation, we
find it helpful to first discuss a simpler variant, which
does not satisfy (1), and which follows trivially from
known results. We consider the following setting, which
is the same for the simpler variant as well as for the actual
new uncertainty relation. We let n be an arbitrary pos-
itive integer, and we fix an arbitrary set of n-bit strings
C C {0,1}™; any such set shall give us an uncertainty
relation. We view C as a code and consider its minimal
distance d. Any code word ¢ = (c1,...,¢,) € C natu-
rally specifies a measurement on an n-qubit state: for
any ¢ € {1,...,n}, measure the i-th qubit in the com-
putational basis if ¢; = 0 and in the Hadamard basis if
¢; = 1. Let now p be an arbitrary n-qubit state, and let X
be the measurement outcome when measuring p in basis
C (as specified above), where C' is arbitrarily distributed
over C (but independent of p). It follows immediately
from Maassen and Uffink’s uncertainty relation [2] that
H(X|C =c¢)+ H(X|C =¢&) > d for any distinct pair
¢, ¢ € C, where H(-]-) represents the conditional Shannon
entropy. As a direct consequence, there exists a code
word /measurement ¢’ € C so that H(X|C =c) > 4 for
all ¢ € C with ¢ # ¢’. In other words, for any state p
there exists ¢’ € C so that unless the choice for the mea-
surement coincides with ¢/, there is at least d/2 bits of
entropy in the outcome X.

Our new entropic uncertainty relation shows that this
very statement essentially still holds when we replace the
Shannon entropy by min-entropy, except that ¢’ becomes
randomized: for any p, there exists a random variable C’,
independent of C, such that
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asymptotically for large n, no matter what the distribu-
tion of C is.! Thus, unless the measurement C' coincides
with C’, there is roughly d/2 bits of min-entropy in the
outcome X.

Note that we have no control over (the distribution
of) C’'. We can merely guarantee that it exists and is
independent of C. It may be insightful to interpret C’
as a wirtual guess for C, guessed by the party that con-
tributes p, and whose goal is to have little uncertainty
in the measurement outcome X. Then, our uncertainty
relation guarantees that there is lots of uncertainty in X
(if d is large), unless the guess was correct. This is the
best we can hope for (at least qualitatively), because p
can indeed be prepared based on an actual guess for C,
where the guess may be arbitrarily distributed (but is in-
dependent of C'), such that there is no uncertainty in X
in case the guess was correct. However, it is important
to realize, that no matter how p is prepared — based on
an actual guess for C' or not — our uncertainty relation
holds and there exists such a virtual guess C”.

We stress that because the min-entropy is more con-
servative than the Shannon entropy, our entropic uncer-
tainty relation does not follow from its simpler Shannon-
entropy version. Neither can it be deduced in an ana-
logue way; the main reason being that for fixed pairs
¢, ¢ € C of distinct code words, there is no strong lower
bound on H_; (X|C =¢) + H,_,; (X|C =¢), in contrast
to the case of Shannon entropy. Indeed, p might be the
uniform mixture of two pure states, one giving no un-
certainty when measured in basis ¢, and the other giv-
ing no uncertainty when measured in basis ¢, so that
H ;. (X|C=c) = H,,(X|C=¢) <1. Because of a sim-
ilar reason, we cannot hope to get a good bound for all
but a fized choice of ¢’; the probabilistic nature of C” is
necessary (in general).

Finally, we would like to point out that our uncer-
tainty relation generalizes to an arbitrary set of m mea-
surements, not necessarily characterized by a code C, as
long as the overlap between any two bases is at most
274/2 e., |(e|y)| < 2742 for all basis vector pairs |¢), |)
coming from different bases.

Formal Statement and Proof Idea

In order to obtain our entropic uncertainty relation
that lower bounds the min-entropy of the measurement
outcome for all but one measurement, we first state an
uncertainty relation that expresses uncertainty by means
of the probability measure of given sets.

Throughout this section, n is an arbitrary but fixed
positive integer, and C C {0,1}" is an arbitrary but fixed
(not necessary linear) code with minimal distance d =
on. For any codeword ¢ € C, a 0-entry indicates the

1 A formal version of this statement can be found in Theorem 2.

computational basis and a l-entry the Hadamard basis,
and we write |z). for the n-qubit state H'|z1) ® ... ®
Her|x,), where H denotes the Hadamard matrix.

Theorem 1. Let p be an arbitrary state of n qubits. For
c €C, let Q°(+) be the distribution of the outcome when p
is measured in the c-basis, i.e., Q°(x) = (x|.p|z).. Then,
for any family {L}cec of subsets L6 C {0,1}™:
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The proof is along similar lines as the proof in the
journal version of [3], which is for the special case of
Theorem 1 where C = {0---0,1---1} C {0,1}". It is
based on the operator norm inequality
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for arbitrary orthogonal projectors Aq, ..., Ap,.

We can reformulate above uncertainty relation in terms
of a “good event” &£ with lower bounded probability, and
if it occurs, then the measurement outcome has high min-
entropy. The statement is obtained by choosing the sets
L¢ in Theorem 1 appropriately.

Corollary 1. Let p be an arbitrary n-qubit state, let C be
an arbitrarily distributed random variable over C, and let
X be the outcome when measuring p in basis C.2 Then,
for any 0 < € < §/4, there exists an event € such that

D Prl€|C=c > (m—1)— (2m—1)- 27"
ceC

and
Ho(XI0=c.€) > (3~ 2)n

for ¢ € C with Pgg(c) > 0.

We are now ready to state our new all-but-one entropic
uncertainty relation.

Theorem 2. Let p be an arbitrary n-qubit state, let C be
an arbitrarily distributed random variable over C, and let
X be the outcome when measuring p in basis C. Then,
for any 0 < € < §/4, there exists a random variable C’
such that (1) C and C’ are independent and (2) there
exists an event Q with Pr[Q] > 1 — 227 such that

0
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for any c,c’ € C such that ¢ # ¢’ and Pocra(c,c’) > 0.
Furthermore, the distribution of C’ is determined by p
alone.

2 Le., Px|c(w|c) = Q°(x), using the notation from Theorem 1.

3 Instead of introducing such an event €, we could also express
the min-entropy bound by means of the smooth min-entropy of
X given C =cand C' =¢'.



The idea of the proof of Theorem 2 is to (try to) de-
fine the random variable C’ in such a way that the event
C # (' coincides with the “good event” & from Corol-
lary 1. It then follows immediately from Corollary 1 that
H_.(X|C =¢,C"# C) > (0/2 — 2¢)n, which is already
close to the actual min-entropy bound we need to prove.
This approach dictates that if the event £ does not occur,
then C' needs to coincide with C. Vice versa, if £ does
occur, then C’ needs to be different to C. However, it is
a priori unclear how to choose C’ different to C' in case £
occurs. There are many ways to set C’ to be different to
C' (unless m = 2). It needs to be done in such a way that
without conditioning on £ or its complement, C' and C’
are independent.

Somewhat surprisingly, it turns out that the following
does the job. To simplify this informal discussion, we as-
sume that the sum of the m probabilities Pr[€|C'=c] from
Corollary 1 equals m — 1 exactly. It then follows that the
corresponding complementary probabilities, Pr[€|C = c]
for the m different choices of ¢ € C, add up to 1 and
thus form a probability distribution. C” is now chosen,
in the above spirit depending on the event &, so that its
marginal distribution Po/ coincides with this probability
distribution: Pg:(c/) = Pr[€|C =¢] for all ¢ € C. The
technical details, and how to massage the argument in
case the sum of the Pr[€|C = ¢|’s is not exactly m — 1,
are worked out in the full version of the paper.

A New Quantum Identification Scheme

As an application of our entropic uncertainty rela-
tion, we propose a new quantum identification scheme.
The goal of (password-based) identification is to “prove”
knowledge of a password w (or PIN) without giving w
away. More formally, given a user U and a server S that
hold a pre-agreed password w, the user wants to convince
the server that he indeeds knows w, but in such a way
that he gives away as little information on w as possible
in case he is actually interacting with a dishonest server.

Our new identification scheme, Q-1ID, is as follows

Protocol Q-ID
- U picks « €r {0,1}" and sends |z) ¢ to S.
- S measures in basis c¢(w). Let 2’ be the outcome.
- U picks random f € F and sends it to S
- S picks random g € G and sends it to U
- U computes and sends z := f(z) & g(w) to S
- S accepts if and only if z = 2’ where 2’ := f(z') ® g(w)

where F and G are suitable classes of hash functions, and
¢(+) is encoding function of a suitable code C C {0,1}".

Our uncertainty relation gives us the right tool to prove
security of the new quantum identification scheme Q-ID
against a dishonest server, in the bounded quantum stor-
age model (BQSM). The latter assumes that the dishon-
est server has limited quantum storage capabilities. Se-
curity against a dishonest user holds unconditionally, i.e.,
without any restrictions.

The distinguishing feature of our new scheme is that
it also offers some security in case the assumption under-
lying the BQSM fails to hold. Indeed, we additionally
prove security of Q-ID against a dishonest server that
is equipped with the following capabilities. He has un-
bounded quantum storage and can reliably store all the
qubits communicated during the course of the scheme,
and he has unbounded classical computation power, but
he is restricted to single-qubit operations and measure-
ments (i.e., cannot operate on several qubits coherently).
This additional security guarantee is in sharp contrast
to the scheme of Damgard et al. [4], which completely
breaks down against a dishonest server that can store all
the communicated qubits untouched and later measure
them qubit-wise in one or the other basis. On the down-
side, Q-ID only offers security in case of a perfect quan-
tum source, which emits precisely one qubit when trig-
gered (i.e., there are no multi-photon emissions), hence
our scheme is currently mainly of theoretical interest.

It is known (see [4]) that any quantum identification
scheme can be broken by a dishonest participant that
has both: unbounded quantum storage and unbounded
quantum computation capabilities. It is thus a desirable
goal to have a scheme for which unbounded quantum
storage and unbounded quantum computation capabili-
ties are necessary to break it. Our new scheme can be
appreciated as a first step towards this goal, in that large
quantum storage and non-trivial quantum computation
capabilities are necessary for a successful attack.

The security proof of our scheme against a quantum-
memory-bounded dishonest server follows quite easily by
means of our new uncertainty relation. Proving security
against a dishonest server that is restricted to single-
qubit operations is more involved. Since the dishonest
server can store all the qubits and then decide in the end
how to measure them, depending on all the information
obtained during the scheme, standard tools like privacy
amplification are not applicable. Our proof involves cer-
tain properties of random linear codes and makes use of
Diaconis and Shahshahani’s XOR Lemma.
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